OpenSim
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Events Macros
Quaternion.cs
Go to the documentation of this file.
1 /* The MIT License
2  *
3  * Copyright (c) 2010 Intel Corporation.
4  * All rights reserved.
5  *
6  * Based on the convexdecomposition library from
7  * <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax.
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 using System;
29 
30 namespace OpenSim.Region.PhysicsModules.ConvexDecompositionDotNet
31 {
32  public class Quaternion : float4
33  {
34  public Quaternion()
35  {
36  x = y = z = 0.0f;
37  w = 1.0f;
38  }
39 
40  public Quaternion(float3 v, float t)
41  {
42  v = float3.normalize(v);
43  w = (float)Math.Cos(t / 2.0f);
44  v = v * (float)Math.Sin(t / 2.0f);
45  x = v.x;
46  y = v.y;
47  z = v.z;
48  }
49 
50  public Quaternion(float _x, float _y, float _z, float _w)
51  {
52  x = _x;
53  y = _y;
54  z = _z;
55  w = _w;
56  }
57 
58  public float angle()
59  {
60  return (float)Math.Acos(w) * 2.0f;
61  }
62 
63  public float3 axis()
64  {
65  float3 a = new float3(x, y, z);
66  if (Math.Abs(angle()) < 0.0000001f)
67  return new float3(1f, 0f, 0f);
68  return a * (1 / (float)Math.Sin(angle() / 2.0f));
69  }
70 
71  public float3 xdir()
72  {
73  return new float3(1 - 2 * (y * y + z * z), 2 * (x * y + w * z), 2 * (x * z - w * y));
74  }
75 
76  public float3 ydir()
77  {
78  return new float3(2 * (x * y - w * z), 1 - 2 * (x * x + z * z), 2 * (y * z + w * x));
79  }
80 
81  public float3 zdir()
82  {
83  return new float3(2 * (x * z + w * y), 2 * (y * z - w * x), 1 - 2 * (x * x + y * y));
84  }
85 
87  {
88  return new float3x3(xdir(), ydir(), zdir());
89  }
90 
91  public static implicit operator float3x3(Quaternion q)
92  {
93  return q.getmatrix();
94  }
95 
96  public static Quaternion operator *(Quaternion a, Quaternion b)
97  {
98  Quaternion c = new Quaternion();
99  c.w = a.w * b.w - a.x * b.x - a.y * b.y - a.z * b.z;
100  c.x = a.w * b.x + a.x * b.w + a.y * b.z - a.z * b.y;
101  c.y = a.w * b.y - a.x * b.z + a.y * b.w + a.z * b.x;
102  c.z = a.w * b.z + a.x * b.y - a.y * b.x + a.z * b.w;
103  return c;
104  }
105 
106  public static float3 operator *(Quaternion q, float3 v)
107  {
108  // The following is equivalent to:
109  //return (q.getmatrix() * v);
110  float qx2 = q.x * q.x;
111  float qy2 = q.y * q.y;
112  float qz2 = q.z * q.z;
113 
114  float qxqy = q.x * q.y;
115  float qxqz = q.x * q.z;
116  float qxqw = q.x * q.w;
117  float qyqz = q.y * q.z;
118  float qyqw = q.y * q.w;
119  float qzqw = q.z * q.w;
120  return new float3((1 - 2 * (qy2 + qz2)) * v.x + (2 * (qxqy - qzqw)) * v.y + (2 * (qxqz + qyqw)) * v.z, (2 * (qxqy + qzqw)) * v.x + (1 - 2 * (qx2 + qz2)) * v.y + (2 * (qyqz - qxqw)) * v.z, (2 * (qxqz - qyqw)) * v.x + (2 * (qyqz + qxqw)) * v.y + (1 - 2 * (qx2 + qy2)) * v.z);
121  }
122 
123  public static Quaternion operator +(Quaternion a, Quaternion b)
124  {
125  return new Quaternion(a.x + b.x, a.y + b.y, a.z + b.z, a.w + b.w);
126  }
127 
128  public static Quaternion operator *(Quaternion a, float b)
129  {
130  return new Quaternion(a.x *b, a.y *b, a.z *b, a.w *b);
131  }
132 
133  public static Quaternion normalize(Quaternion a)
134  {
135  float m = (float)Math.Sqrt(a.w * a.w + a.x * a.x + a.y * a.y + a.z * a.z);
136  if (m < 0.000000001f)
137  {
138  a.w = 1;
139  a.x = a.y = a.z = 0;
140  return a;
141  }
142  return a * (1f / m);
143  }
144 
145  public static float dot(Quaternion a, Quaternion b)
146  {
147  return (a.w * b.w + a.x * b.x + a.y * b.y + a.z * b.z);
148  }
149 
150  public static Quaternion slerp(Quaternion a, Quaternion b, float interp)
151  {
152  if (dot(a, b) < 0.0)
153  {
154  a.w = -a.w;
155  a.x = -a.x;
156  a.y = -a.y;
157  a.z = -a.z;
158  }
159  float d = dot(a, b);
160  if (d >= 1.0)
161  {
162  return a;
163  }
164  float theta = (float)Math.Acos(d);
165  if (theta == 0.0f)
166  {
167  return (a);
168  }
169  return a * ((float)Math.Sin(theta - interp * theta) / (float)Math.Sin(theta)) + b * ((float)Math.Sin(interp * theta) / (float)Math.Sin(theta));
170  }
171 
172  public static Quaternion Interpolate(Quaternion q0, Quaternion q1, float alpha)
173  {
174  return slerp(q0, q1, alpha);
175  }
176 
177  public static Quaternion Inverse(Quaternion q)
178  {
179  return new Quaternion(-q.x, -q.y, -q.z, q.w);
180  }
181 
182  public static Quaternion YawPitchRoll(float yaw, float pitch, float roll)
183  {
184  roll *= (3.14159264f / 180.0f);
185  yaw *= (3.14159264f / 180.0f);
186  pitch *= (3.14159264f / 180.0f);
187  return new Quaternion(new float3(0.0f, 0.0f, 1.0f), yaw) * new Quaternion(new float3(1.0f, 0.0f, 0.0f), pitch) * new Quaternion(new float3(0.0f, 1.0f, 0.0f), roll);
188  }
189 
190  public static float Yaw(Quaternion q)
191  {
192  float3 v = q.ydir();
193  return (v.y == 0.0 && v.x == 0.0) ? 0.0f : (float)Math.Atan2(-v.x, v.y) * (180.0f / 3.14159264f);
194  }
195 
196  public static float Pitch(Quaternion q)
197  {
198  float3 v = q.ydir();
199  return (float)Math.Atan2(v.z, Math.Sqrt(v.x * v.x + v.y * v.y)) * (180.0f / 3.14159264f);
200  }
201 
202  public static float Roll(Quaternion q)
203  {
204  q = new Quaternion(new float3(0.0f, 0.0f, 1.0f), -Yaw(q) * (3.14159264f / 180.0f)) * q;
205  q = new Quaternion(new float3(1.0f, 0.0f, 0.0f), -Pitch(q) * (3.14159264f / 180.0f)) * q;
206  return (float)Math.Atan2(-q.xdir().z, q.xdir().x) * (180.0f / 3.14159264f);
207  }
208  }
209 }
static Quaternion YawPitchRoll(float yaw, float pitch, float roll)
Definition: Quaternion.cs:182
static Quaternion slerp(Quaternion a, Quaternion b, float interp)
Definition: Quaternion.cs:150
static Quaternion Interpolate(Quaternion q0, Quaternion q1, float alpha)
Definition: Quaternion.cs:172
Quaternion(float _x, float _y, float _z, float _w)
Definition: Quaternion.cs:50