OpenSim
 All Classes Namespaces Files Functions Variables Typedefs Enumerations Enumerator Properties Events Macros
Concavity.cs
Go to the documentation of this file.
1 /* The MIT License
2  *
3  * Copyright (c) 2010 Intel Corporation.
4  * All rights reserved.
5  *
6  * Based on the convexdecomposition library from
7  * <http://codesuppository.googlecode.com> by John W. Ratcliff and Stan Melax.
8  *
9  * Permission is hereby granted, free of charge, to any person obtaining a copy
10  * of this software and associated documentation files (the "Software"), to deal
11  * in the Software without restriction, including without limitation the rights
12  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
13  * copies of the Software, and to permit persons to whom the Software is
14  * furnished to do so, subject to the following conditions:
15  *
16  * The above copyright notice and this permission notice shall be included in
17  * all copies or substantial portions of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
20  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
21  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
22  * AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
23  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
24  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
25  * THE SOFTWARE.
26  */
27 
28 using System;
29 using System.Collections.Generic;
30 using System.Text;
31 
32 namespace OpenSim.Region.PhysicsModules.ConvexDecompositionDotNet
33 {
34  public static class Concavity
35  {
36  // compute's how 'concave' this object is and returns the total volume of the
37  // convex hull as well as the volume of the 'concavity' which was found.
38  public static float computeConcavity(List<float3> vertices, List<int> indices, ref float4 plane, ref float volume)
39  {
40  float cret = 0f;
41  volume = 1f;
42 
43  HullResult result = new HullResult();
44  HullDesc desc = new HullDesc();
45 
46  desc.MaxFaces = 256;
47  desc.MaxVertices = 256;
48  desc.SetHullFlag(HullFlag.QF_TRIANGLES);
49  desc.Vertices = vertices;
50 
51  HullError ret = HullUtils.CreateConvexHull(desc, ref result);
52 
53  if (ret == HullError.QE_OK)
54  {
55  volume = computeMeshVolume2(result.OutputVertices, result.Indices);
56 
57  // ok..now..for each triangle on the original mesh..
58  // we extrude the points to the nearest point on the hull.
59  List<CTri> tris = new List<CTri>();
60 
61  for (int i = 0; i < result.Indices.Count / 3; i++)
62  {
63  int i1 = result.Indices[i * 3 + 0];
64  int i2 = result.Indices[i * 3 + 1];
65  int i3 = result.Indices[i * 3 + 2];
66 
67  float3 p1 = result.OutputVertices[i1];
68  float3 p2 = result.OutputVertices[i2];
69  float3 p3 = result.OutputVertices[i3];
70 
71  CTri t = new CTri(p1, p2, p3, i1, i2, i3);
72  tris.Add(t);
73  }
74 
75  // we have not pre-computed the plane equation for each triangle in the convex hull..
76  float totalVolume = 0;
77 
78  List<CTri> ftris = new List<CTri>(); // 'feature' triangles.
79  List<CTri> input_mesh = new List<CTri>();
80 
81  for (int i = 0; i < indices.Count / 3; i++)
82  {
83  int i1 = indices[i * 3 + 0];
84  int i2 = indices[i * 3 + 1];
85  int i3 = indices[i * 3 + 2];
86 
87  float3 p1 = vertices[i1];
88  float3 p2 = vertices[i2];
89  float3 p3 = vertices[i3];
90 
91  CTri t = new CTri(p1, p2, p3, i1, i2, i3);
92  input_mesh.Add(t);
93  }
94 
95  for (int i = 0; i < indices.Count / 3; i++)
96  {
97  int i1 = indices[i * 3 + 0];
98  int i2 = indices[i * 3 + 1];
99  int i3 = indices[i * 3 + 2];
100 
101  float3 p1 = vertices[i1];
102  float3 p2 = vertices[i2];
103  float3 p3 = vertices[i3];
104 
105  CTri t = new CTri(p1, p2, p3, i1, i2, i3);
106 
107  featureMatch(t, tris, input_mesh);
108 
109  if (t.mConcavity > 0.05f)
110  {
111  float v = t.getVolume();
112  totalVolume += v;
113  ftris.Add(t);
114  }
115  }
116 
117  SplitPlane.computeSplitPlane(vertices, indices, ref plane);
118  cret = totalVolume;
119  }
120 
121  return cret;
122  }
123 
124  public static bool featureMatch(CTri m, List<CTri> tris, List<CTri> input_mesh)
125  {
126  bool ret = false;
127  float neardot = 0.707f;
128  m.mConcavity = 0;
129 
130  for (int i = 0; i < tris.Count; i++)
131  {
132  CTri t = tris[i];
133 
134  if (t.samePlane(m))
135  {
136  ret = false;
137  break;
138  }
139 
140  float dot = float3.dot(t.mNormal, m.mNormal);
141 
142  if (dot > neardot)
143  {
144  float d1 = t.planeDistance(m.mP1);
145  float d2 = t.planeDistance(m.mP2);
146  float d3 = t.planeDistance(m.mP3);
147 
148  if (d1 > 0.001f || d2 > 0.001f || d3 > 0.001f) // can't be near coplaner!
149  {
150  neardot = dot;
151 
152  t.raySect(m.mP1, m.mNormal, ref m.mNear1);
153  t.raySect(m.mP2, m.mNormal, ref m.mNear2);
154  t.raySect(m.mP3, m.mNormal, ref m.mNear3);
155 
156  ret = true;
157  }
158  }
159  }
160 
161  if (ret)
162  {
163  m.mC1 = m.mP1.Distance(m.mNear1);
164  m.mC2 = m.mP2.Distance(m.mNear2);
165  m.mC3 = m.mP3.Distance(m.mNear3);
166 
167  m.mConcavity = m.mC1;
168 
169  if (m.mC2 > m.mConcavity)
170  m.mConcavity = m.mC2;
171  if (m.mC3 > m.mConcavity)
172  m.mConcavity = m.mC3;
173  }
174 
175  return ret;
176  }
177 
178  private static float det(float3 p1, float3 p2, float3 p3)
179  {
180  return p1.x * p2.y * p3.z + p2.x * p3.y * p1.z + p3.x * p1.y * p2.z - p1.x * p3.y * p2.z - p2.x * p1.y * p3.z - p3.x * p2.y * p1.z;
181  }
182 
183  public static float computeMeshVolume(List<float3> vertices, List<int> indices)
184  {
185  float volume = 0f;
186 
187  for (int i = 0; i < indices.Count / 3; i++)
188  {
189  float3 p1 = vertices[indices[i * 3 + 0]];
190  float3 p2 = vertices[indices[i * 3 + 1]];
191  float3 p3 = vertices[indices[i * 3 + 2]];
192 
193  volume += det(p1, p2, p3); // compute the volume of the tetrahedran relative to the origin.
194  }
195 
196  volume *= (1.0f / 6.0f);
197  if (volume < 0f)
198  return -volume;
199  return volume;
200  }
201 
202  public static float computeMeshVolume2(List<float3> vertices, List<int> indices)
203  {
204  float volume = 0f;
205 
206  float3 p0 = vertices[0];
207  for (int i = 0; i < indices.Count / 3; i++)
208  {
209  float3 p1 = vertices[indices[i * 3 + 0]];
210  float3 p2 = vertices[indices[i * 3 + 1]];
211  float3 p3 = vertices[indices[i * 3 + 2]];
212 
213  volume += tetVolume(p0, p1, p2, p3); // compute the volume of the tetrahedron relative to the root vertice
214  }
215 
216  return volume * (1.0f / 6.0f);
217  }
218 
219  private static float tetVolume(float3 p0, float3 p1, float3 p2, float3 p3)
220  {
221  float3 a = p1 - p0;
222  float3 b = p2 - p0;
223  float3 c = p3 - p0;
224 
225  float3 cross = float3.cross(b, c);
226  float volume = float3.dot(a, cross);
227 
228  if (volume < 0f)
229  return -volume;
230  return volume;
231  }
232  }
233 }
Interactive OpenSim region server
Definition: OpenSim.cs:55